Insulin Induces the Release of Vasodilator Compounds From Platelets by a Nitric Oxide–G Kinase–VAMP-3–dependent Pathway

نویسندگان

  • Voahanginirina Randriamboavonjy
  • Jürgen Schrader
  • Rudi Busse
  • Ingrid Fleming
چکیده

Insulin-induced vasodilatation is sensitive to nitric oxide (NO) synthase (NOS) inhibitors. However, insulin is unable to relax isolated arteries or to activate endothelial NOS in endothelial cells. Since insulin can enhance platelet endothelial NOS activity, we determined whether insulin-induced vasodilatation can be attributed to a NO-dependent, platelet-mediated process. Insulin failed to relax endothelium-intact rings of porcine coronary artery. The supernatant from insulin-stimulated human platelets induced complete relaxation, which was prevented by preincubation of platelets with a NOS inhibitor, the soluble guanylyl cyclase inhibitor, NS 2028, or the G kinase inhibitor, KT 5823, and was abolished by an adenosine A2A receptor antagonist. Insulin induced the release of adenosine trisphosphate (ATP), adenosine, and serotonin from platelet-dense granules in a NO-dependent manner. This response was not detected using insulin-stimulated platelets from endothelial NOS-/- mice, although a NO donor elicited ATP release. Insulin-induced ATP release from human platelets correlated with the association of syntaxin 2 with the vesicle-associated membrane protein 3 but was not associated with the activation of alphaIIbbeta3 integrin. Thus, insulin elicits the release of vasoactive concentrations of ATP and adenosine from human platelets via a NO-G kinase-dependent signaling cascade. The mechanism of dense granule secretion involves the G kinase-dependent association of syntaxin 2 with vesicle-associated membrane protein 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

Investigation on the vasodilatory effect of insulin through KATP channels and NO pathway in the skin vessels of native and diabetic rats

Introduction: Endothelium and smooth muscle dysfunction are the most important complications of diabetes. In type 1 diabetic patients, absence of insulin leads to vasoconstriction and lower skin blood perfusion. Release of some mediators by endothelium which is induced by insulin causes vasodilation, but the exact mechanism of insulin vasodilatory effect is not detected properly. At present st...

متن کامل

The discovery of nitric oxide as the endogenous nitrovasodilator.

Endothelium-derived relaxing factor (EDRF) is a labile humoral agent released by vascular endothelium that mediates the relaxation induced by some vasodilators, including acetylcholine and bradykinin. EDRF also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to vascular endothelium. These actions of EDRF are mediated through stimulat...

متن کامل

Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction.

Studies with cGMP-dependent protein kinase I (cGK-I)-deficient human cells and mice demonstrated that cGK-I ablation completely disrupts the NO/cGMP pathway in vascular tissue, which indicates a key role of this protein kinase as a mediator of the NO/cGMP action. Analysis of the vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-VASP) is a useful tool to monitor cGK-I activat...

متن کامل

Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase.

Nitric oxide (NO) is a potent vasodilator and inhibitor of platelet activation. NO stimulates production of cGMP and activates cGMP-dependent protein kinase (G kinase), which by an unknown mechanism leads to inhibition of Galphaq-phospholipase C-inositol 1, 4,5-triphosphate signaling and intracellular calcium mobilization for several important agonists, including thromboxane A2 (TXA2). To explo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2004